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a b s t r a c t

This article describes the classification of biodiesel samples using NIR spectroscopy and chemomet-
ric techniques. A total of 108 spectra of biodiesel samples were taken (being three samples each of
four types of oil, cottonseed, sunflower, soybean and canola), from nine manufacturers. The measure-
ments for each of the three samples were in the spectral region between 12,500 and 4000 cm−1. The
data were preprocessed by selecting a spectral range of 5000–4500 cm−1, and then a Savitzky–Golay
second-order polynomial was used with 21 data points to obtain second derivative spectra. Characteri-
zation of the biodiesel was done using chemometric models based on hierarchical cluster analysis (HCA),
iodiesel
IR
attern recognition

principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA) elaborated
for each group of biodiesel samples (cotton, sunflower, soybean and canola). For the HCA and PCA, the
formation of clusters for each group of biodiesel was observed, and SIMCA models were built using 18
spectral measurements for each type of biodiesel (training set), and nine spectral measurements to con-
struct a classification set (except for the canola oil which used eight spectra). The SIMCA classifications
obtained 100% accurate identifications. Using this strategy, it was feasible to classify biodiesel quickly

hout
and nondestructively wit

. Introduction

Interest in fuels that replace petroleum derivates has increased
ecause of their potential for reduced emissions and renewabil-

ty [1]. This interest has also grown dramatically since the 1970s
hen the Organization of Petroleum Exporting Countries (OPEC)
ecided to restrict the amount of oil to be made available, causing
substantial increase in the price of oil per barrel and two major
orld crises. Since then the search for renewable energy sources

with less environmental impact), has become part of the agenda
or governments around the world [1]. A renewable fuel, biodiesel
s a good alternative to petroleum-derived diesel, and is able to
ignificantly reduce the emission of many greenhouse gases like
arbon dioxide and sulfur. It can also be used alone by itself, or
ixed with diesel in any proportion [2]. Biodiesel consists of esters

f fatty acids, obtained by transesterification of vegetal oils and

nimal fats with short-chain alcohols (methanol or ethanol), in the
resence of sodium hydroxide as a catalyst.

Along with growing interest and the increase in worldwide
roduction, studies and quality assessments of biodiesel have mul-
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the need for various analytical determinations.
© 2010 Elsevier B.V. All rights reserved.

tiplied for both stand alone [3–14] and blended biodiesel–diesel
[15–21].

Several analytical techniques are used in biodiesel analysis,
among which NIR spectrometry [22–27], a rapid and non-
destructive analytical technique based on the absorption of
electromagnetic energy between 400 and 14,000 cm−1 is useful to
predict various properties. However, despite successful application
of NIR techniques to the classification of beverages [28,29], foods
[29–32], cigarettes [33] and fossil fuels [34–43], few articles have
been published for biodiesel [24].

Considering the lack of procedures to identify the raw materials
used in obtaining a certain biodiesel (i.e. government verification
for tax exemptions), this study united NIR spectrometry, and pat-
tern recognition for biodiesels in order to identify which vegetable
oils are used in production. Principal component analysis (PCA), and
hierarchical cluster analysis (HCA) were used for unsupervised pat-
tern recognition while self modeling independent cluster analysis
(SIMCA), was used for supervised pattern recognition.

2. Experimental
2.1. Reagents, samples and apparatus

Four vegetable oils: cottonseed, soybean, canola, and sun-
flower oils, twelve samples of each from different manufacturer
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Fig. 1. Average gross spectra from biodiesel samples of cotton, cano

atches were acquired in the city of Campina Grande, Paraíba,
razil.

From these 12 samples of four vegetable oils, three biodiesel
amples each were synthesized. Transesterification reaction with
thanol and homogeneous catalysis using KOH and a molar ratio of
:1 of ethanol/oil ensured excess ethanol with 1% (w/w) catalyst.
fterwards, the biodiesel samples were washed with distilled water
nd hydrochloric acid solution 0.1 mol L−1, for neutralization at a
H of 7.0.

.2. NIR spectra measurements

Diffused reflectance spectroscopic measurements were per-
ormed by using an XDS Master Lab spectrometer (FOSS), equipped
ith quartz cells (4 mm optical path). The spectral resolution was

.10 cm−1. For each sample, three spectra were recorded in the
2,500–4000 cm−1 wavelength range, after which the three spectra
ere treated with chemometrics pattern recognition techniques

nd HCA classification, carried out on Statistics 9.0, and PCA and
IMCA, using Unscrambler 9.8.

.3. Chemometrics study
The spectra were preprocessed by selecting a range of wave-
engths, 5000–4500 cm−1 as a working region, because in this
egion overtones of C–H and C O stretching combination and C–H
nd C C asymmetric stretching combination occur. To remove
oise the spectra were then treated using Savitzky–Golay first

Fig. 2. Average preprocessed spectra of biodiesel samples of cotton, canola,
nflower and soybean in the spectral region of 5000 and 4500 cm−1.

derivative procedure with a second-order polynomial and a
21-point window in the Unscrambler software. The resulting
derivative spectra comprised 380 variables. PCA and HCA analysis
were applied to the data matrix verifying the clustering of biodiesel
samples from the cottonseed, soybean, canola, and sunflower veg-
etable oils.

The HCA dendrogram was conducted in complete
linkage mode (amalgamation rule), using 1-Pearson r dis-
tances (distance measure). The PCA classification model
was validated by (leave-one out) cross-validation proce-
dure.

The sample set was constructed using 12 biodiesel samples from
each vegetable oil.

The SIMCA models were built from 18 spectral measurements
for each biodiesel. The classification set was composed of 36 spec-
tral measurements (9 for each type of biodiesel). The optimal
number of principal components (PC) for each model were one for
cottonseed e soybean and two for canola and sunflower.

3. Results and discussion

3.1. Preprocessing of spectral data
The average spectra of biodiesel samples are shown in Fig. 1,
in the working spectra range of (4500–5000 cm−1). In Fig. 2,
the signals of the preprocessed data, to which were applied the
Savitzky–Golay first derivative procedure with a second-order
polynomial and a 21-point window are shown.

sunflower and soybean in the spectral region of 5000 and 4500 cm−1.
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Fig. 3. Dendrogram analysis (HCA) for biodiese

.2. Clustering using HCA and PCA

Fig. 3 shows the dendrogram for the study of biodiesel sam-
les, based on HCA techniques. For this, the dendrogram was
onducted in complete linkage mode (amalgamation rule) using 1-
earson r distances (distance measure). The clusters were formed
ased on the relationship between binding distance, and the max-

mum distance binding: cotton cluster (binding distance of 21%),
anola cluster (10%), sunflower cluster (14%) and soybean (8%). It
as also observed that the groups of biodiesel samples differed

y the following distances; soybean cluster to sunflower (bind-
ng distance of 32%), soybean/sunflower cluster to cotton (47%),
oybean/sunflower/cotton cluster to canola (100%).

In Fig. 4 the scores graph PC1 (93%) × PC2 (6%) for the biodiesel
amples is studied, clearly demonstrating four clusters of biodiesel

amples from the oils. PC1 separates cotton biodiesel from soy-
ean biodiesel. The difference between the two oils is the presence
f linolenic, eicosanoic and eicosenoic acids in soybean oil, which
bviously produce esters. PC2 can separate biodiesel samples from
anola, sunflower and cotton/soybean. The difference in the fatty

ig. 4. PC1 × PC2 score plot for the overall set of 108 biodiesel samples (� cot-
on; � soybean; � sunflower; canola). The explained variance by each principal
omponent is indicated in parenthesis.
ples of cotton, canola, sunflower and soybean.

acids of the oils is in the proportion of oleic and linoleic acids in
soybean and sunflower oils and linoleic acid in cotton/soybean,
virtually the only differences between these oils.

3.3. SIMCA classification

The training set for each type of biodiesel was based on 21 spec-
tral measurements. The model validation was based on full cross
validation (leave-one-out). The classification set was constituted
of six spectra for each type of biodiesel. It was verified that in all
cases, the samples from the set were classified correctly, with no
occurrence of type I and II errors. As an example of class separa-
tion, the Coomans plot at the 95% confidence level, which shows the
orthogonal distances of samples from the classification set from the

models of cotton biodiesel versus sunflower biodiesel is presented
in Fig. 5. Similar results are obtained with the other Coomans plots.

Fig. 5. SIMCA Coomans plot of soybean and cotton biodiesel models for classification
set.
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. Conclusions

This paper proposes a classification method based on chemo-
etric modeling and NIR spectrometry, for identifying the oil(s)

riginated the biodiesel. The results from PCA and HCA unsu-
ervised classification techniques show the formation of distinct
lusters for each type of biodiesel while demonstrating that the
anola group differed notably from the others. It was also shown
hat the SIMCA models allowed classification of biodiesel samples
ased on the seed oil used without type I or type II errors.

The classification models using SIMCA techniques were reliable
howing that the samples have structures relating each biodiesel
o its seed oil. The results also suggest that the proposed meth-
ds hold promise for the assessment of biodiesel samples using
pectroscopic measurements and chemometric techniques alone.
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